

日本衛星ビジネス協会 学生講演会

高熱伝導性CFRP組込型ループヒートパイプラジエータの提案 及び宇宙模擬環境下での放熱特性評価

〇安江真穂 前川諒弥 (名古屋大) 秋月祐樹 小川博之 (JAXA) 長野方星(名古屋大)

2023年1月13日

■ 宇宙の環境

エネルギー保存則

■ 地上と宇宙の熱の伝わり方

地上

[1]対流イメージ図

対流

流体を媒介して伝わる

宇宙

ふく射(電磁波)

- 赤外線を媒介して伝わる
- 伝熱効率低

[1]ふく射イメージ図

 $Q = \varepsilon_H \sigma A (T^4 - T^4_{amb})$

 ε_H : 全半球放射率 σ : ステファンボルツマン定数

$Q = hA(T - T_{amb})$

- h:対流熱伝達率
- A:放熱面積

宇宙空間ではふく射でしか排熱できない

[2]宇宙空間で使用されているラジエータ

過酷な熱環境における宇宙機の熱制御は必要不可欠

[1]https://archi-setsubi.com/air-conditioning/heat-conduction/[2]https://www.isas.jaxa.jp/j/forefront/2009/nagano/

熱をすてる量を無電力でコントロールしたい

■ 今後の宇宙ミッション

排熱量の増加 放熱

放熱面積不足

太陽光発電ができない

軽量・高効率・無電力による熱制御デバイスの創出が急務

電力を使わずに, 熱を遠くに運ぶ技術

[2] https://www.nikkei.com/article/DGXBZO32688860S1A720C1000000/

電力を使わずに, <u>熱を捨てる量を制御する</u>技術

[1] https://humans-in-space.jaxa.jp/future/

[3]https://sorae.info/space/2017_09_21_jaxadlr.html

ループヒートパイプ(LHP)

■ ループヒートパイプ (Loop Heat Pipe : LHP)

カーボンニュートラルな技術として宇宙・民生など様々な分野で期待

LHPの応用研究

Heat exchange unit (Evaporator)

大きな熱量(4.2kW)が運べることを実証

Liquid line

CC•Bombe

可逆展開ラジエータ 10 可逆展開ラジエータ(Reversible Thermal Panel: RTP) ⇒自律的に放熱面を展開収納することにより放熱量を制御 グラファイトシート 粘着剤 放熱量小→保温 放熱面 放熱面 Ag/TEF ベースプレート アクチュエータ 放熱量大 (宇宙) 搭載機器 (衛星内部) Cold case (Stowed) Hot case (Deployed)

◆ 特徴

- ✓ <u>高熱伝導材</u>によるラジエータ面内熱拡散
 ↓ グラファイトシート 軽量
- ✓ <u>形状記憶合金 (SMA)</u>によるフィンの展開収納
 → 可逆アクチュエータ → 無電力

グラファイトシートと可逆アクチュエータ[1]

可逆展開ラジエータ

性能が認められ、DESTNY+の搭載が検討される

https://destiny.isas.jaxa.jp/

将来的な大型ミッション(月面計画等)に対する 大型かつ無電力熱制御デバイスの創出

[1]Yuki akizuki et.al, "Development and testing of the re-deployable radiator for deep space explorer", Applied Thermal Emgineering, January 2020

[2] A. Okamoto, T. Miyakita and H. Nagano, "Initial Evaluation of On-orbit Experiment of Loop Heat Pipe on ISS", 49th International Conference on Environmental Systems, 7-11 July, 2019, Boston, Massachusetts

Nagoya University Spacecraft Thermal Engineering Lab.

デバイス設計

■ 設計要求及び計算結果

設計要求	
作動流体	アンモニア
最大放熱量	500 W
最大動作温度	50 °C
熱輸送距離	2000 mm

500Wとは?

解析条件

シンク温度	-270°C				
放熱条件	ラジエータによる輻射				
エバポレータ	シングルエバポレータ				
コンデンサ	マルチコンデンサ				
材質	SUS306(LHP) CFRP(ラジエータ面)				

ラジエータを統合した定常モデルを構築し、500W級のデバイスを設計した

埋め込み加工によるラジエータ製作

■ 埋め込み加工手順

<u>プリプレグ</u>:炭素繊維にあらかじめ半硬化樹脂 を含侵させたシート状のもの

- 1. ベースの上に溝を掘った4層を積層
- 2. LHP凝縮器を乗せる
- 3.2を覆うように積層
- 4. オートクレーブ内で加圧、加熱
- 5. 成形

実験セットアップ

■ 外観図

▶ LHPラジエータ諸元

蒸発器 液管			リザーバ			
内径 2	22mm	内径	1.7mm	-	内径	44mm
有効長さ 7	70mm	長さ	2000mm		長さ	75mm
蒸気管	i	ウィック			ラジエータパネル	
内径 3.2	2mm	内径	16 mm		高さ	1000mm
長さ 200	0mm	空隙率	0.6		幅	750mm
凝縮器		細孔半谷	≩ 3.1µm		厚み	1.05mm
内径 3.2	2mm					
長さ 200	0mm					

Εl

Nagoya University Spacecraft Thermal Engineering Lab.

熱真空試験結果

熱真空試験結果

■ ステップサイクル試験結果(100W⇔500W)

月面探査の活発化

[2]有人与圧ローバー

[3]月面基地

月面の温度環境

✓ 昼夜の熱環境変化 (昼:+120℃,夜:-180℃) ✓ 昼と夜が14日周期で続く ✓ 夜間のエネルギー確保(越夜)

将来的な月面ミッションへ向けたLHP式展開ラジエータの開発を目指す

[1]https://www.exploration.jaxa.jp/program/lunarpolar/ [2] https://humans-in-space.jaxa.jp/biz-lab/tech/rover/

[3] https://humans-in-space.jaxa.jp/future/

