

Beyond 5G 時代の宇宙統合ネットワーク実現に向けた研究開発の取り組み

東北大学 大学院情報科学研究科 川本 雄一

自己紹介

• 氏名:川本雄一

• 所属:東北大学 大学院情報科学研究科

役職:准教授

専門:情報通信技術(主に無線通信)

- 衛星通信
- 無人航空機
- Intelligent Reflecting Surface (IRS)
- アドホックネットワーク
- etc.

全空間ユビキタス社会の到来

- 近年、世界的にICTの利活用が拡大
- → 発展途上国におけるネットワーク市場獲得を目指す企業が台頭
 - 全世界に地上通信網を設置するコストは莫大

安価に通信インフラの設置が可能な低軌道衛星コンステレーションに注目

- ◆低軌道に打ち上げた多数の小型衛星を連携させて運用する方式
 - 数百~数万機の衛星により通信インフラを設置
 - 地上通信網よりも安価に通信インフラの設置が期待
 - → 極域を含めた世界全域を対象に高信頼・高速大容量通信の 提供が可能
- ◆空域:HAPSやUAVによるネットワーク構築
 - ◆空飛ぶ車などの新たな通信対象も登場

近年の大規模衛星ネットワーク

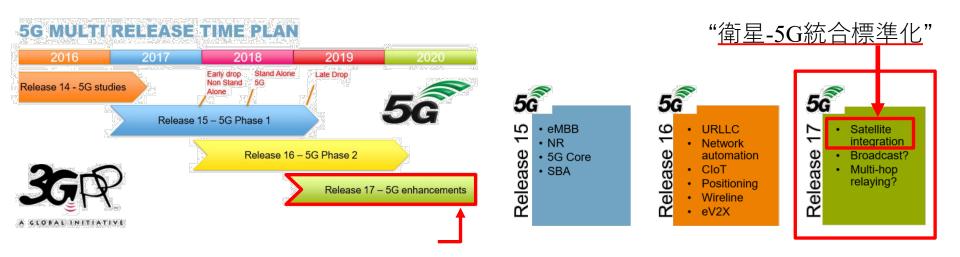
- インターネットにアクセスできない"Other three billions"のための環境構築 → 長期的な収入源となる見込み
- 事業展開を目指す主な企業

会社名	衛星機数	サービス
Viasat	20	インターネット衛星通信
Kepler	140	loT通信
LeoSat [操業停止]	108	高速ブロードバンド
SpaceX	30000+	インターネット通信
Telesat	117+	インターネット通信
OneWeb[破産]	648	インターネット通信
SES(O3b)	42	インターネット通信
Audacy [操業停止]	12	インターネット通信
Space Norway	11	北極圏インターネット
Boeing	1396~2956	インターネット通信
Theia Holdings	112	通信と地球観測
Amazon	3000+	インターネット通信

GAFA等もビジネスチャンスとして 低軌道衛星コンステに出資や 衛星事業の立ち上げを進めている

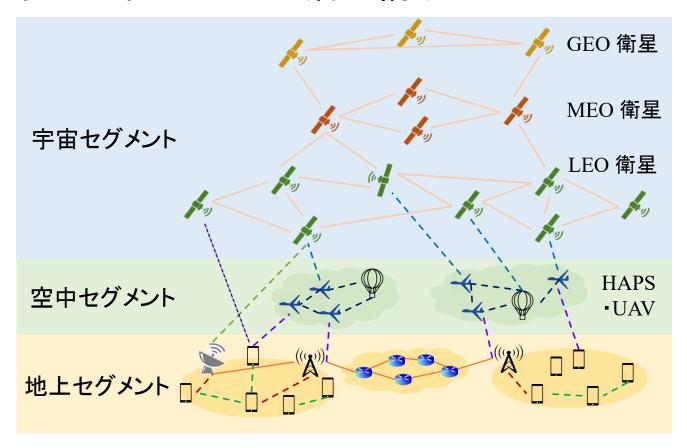
GAFAによる出資、事業展開

Google


- SpaceXへの出資、HAPS事業の立ち上げ
- Apple
 - iPhoneの常時接続化に向けて通信衛星の技術を開発中
- Facebook
 - 子会社にて人工衛星「Athena」を開発
 - SpaceXのStarlinkよりも10倍高速なインターネット環境を提供
- Amazon
 - Kuiper Systems
 - 高度590キロメートルに784機、610キロメートルに1296機、630キロメートルに1156機と3段階の低軌道に3236機の衛星
 - AWS Ground Station
 - 自然災害発生時に映像データ解析による救助活動
 - 船舶、航空機等が利用できる正確な天気予報の提供
 - 物流パターンを利用したビジネストレンド査定

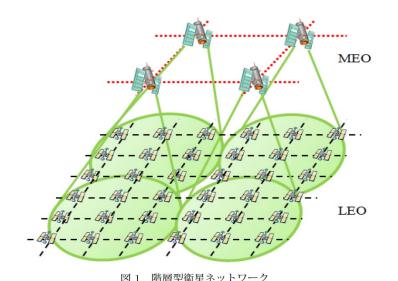
衛星通信と5Gの連携について(3GPP)

- 3GPP:移動通信システムの国際標準仕様を策定する標準化プロジェクト
 - → 2017年3月に衛星と5Gの連携に向けた標準化検討を開始
 - 衛星 (GEO, MEO, LEO) や成層圏プラットフォーム (HAPS) 等を統合させたネットワークを非地上系ネットワーク(NTN)とし、ユースケースやサービス要求、接続アーキテクチャなどの様々な観点で標準化が進行中


今後、衛星通信と5G-B5Gの連携は加速する見通し

SAGIN (Space-Air-Ground Integrated Networks) の紹介

■ 宇宙・空中・地上の3層で構成されるネットワーク



Jiajia Liu, Yongpeng Shi, Yongpeng Shi, Zubair Md. Fadlullah, and Nei Kato, "Space-Air-Ground Integrated Network: A Survey," IEEE Communications Surveys & Tutorials, vol. 20, no. 4, pp. 2714-2741, Oct. 2018.

歴史と思い出

- 階層型衛星ネットワークというコンセプト (1990年代に研究論文もすでにあった)
 - 輻輳回避のためのルーティング研究など
 - 別途HAPSのワードも

Yuichi Kawamoto, Hiroki Nishiyama, Naoko Yoshimura, and Nei Kato, "階層型衛星ネットワークの構成と通信遅延の関係に関する一考察," 電子情報通信学会技術研究報告, vol. 111, no. 24, SAT2011-7, pp. 33-38, 2011年5月.

■ その後,無人航空機(UAV)ネットワークが注目され,衛星との融合,宇宙-空-地上への流れ

SAGIN実現に必要な技術と課題

■ SAGINの特徴

多層構造

複数システム の連携 広い カバレッジ

SAGINの実現に必要な技術

モビリティ 管理

資源割当 スケジューリ ング ルーティング 制御

エネルギー 管理 ネットワーク 制御

周波数帯域 管理 ハンドオーバ 制御

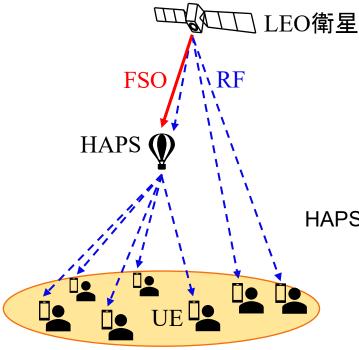
セキュリティ 保証

- 実現のための課題
 - モビリティ: どうやって動的なリソースの追跡を行うか
 - ルーティング制御:どのアルゴリズム,手順を選択するか
 - 資源割当スケジューリング:どのリソースをいつ利用するか
 - ハンドオーバ管理:どのリソースにハンドオーバを行うか

誰が?

本日ご紹介する研究事例

- SAGINを構成する要素毎の研究
 - LEO衛星とHAPSのカバーエリア制御
 - 衛星間光通信における交差軌道間接続
 - LEO衛星×IRS×周波数プリズムによるマルチビーム制御
 - 光衛星通信×分散型グリーンデータセンタシステム



LEO衛星とHAPSの カバーエリア制御手法に関する検討

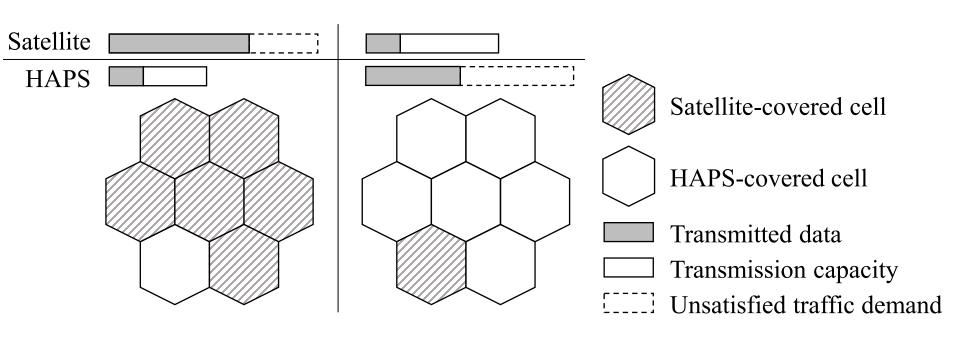
想定環境

- HAPSを用いた宇宙-空-地上統合ネットワーク
 - FSO通信とRF通信の併用
 - 地上UEへのダウンリンクシナリオを想定

HAPS: High-Altitude Platform Station

FSO: Free-Space Optical

RF: Radio Frequency


UE: User Equipment

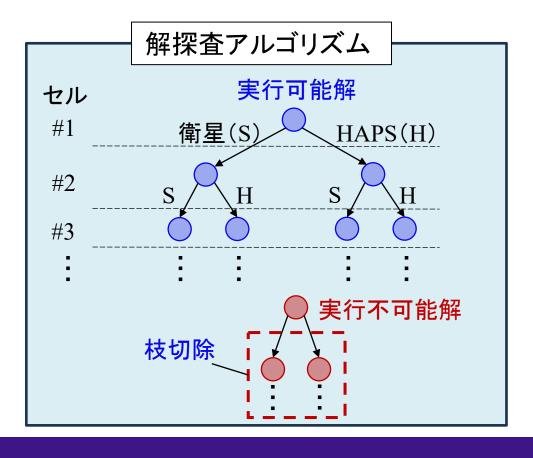
LEO: Low-Earth Orbit

研究課題

- 複数UEへのダウンリンク経路選択
 - 既存研究では衛星から<u>単一地上受信点</u>までの経路に注目
 - エンドユーザである<u>複数UE</u>までの経路決定手法は未構築
 - カバーエリアの偏りによる周波数利用効率の低下

提案手法

- LEO衛星/HAPSのカバーエリア制御手法
 - 周波数利用効率を最大化する制御パラメータの導出
 - 分枝限定法に基づく効率的な最適解探査手法

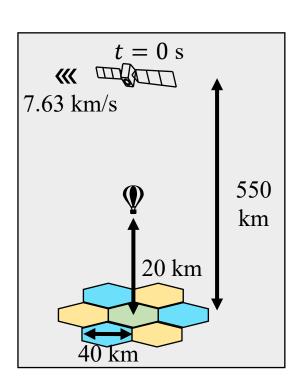

最適化問題の定式化

 $\mathbb{C}^{\text{opt}} = \arg\max_{\mathbb{C}} SE$

SE: 周波数利用効率

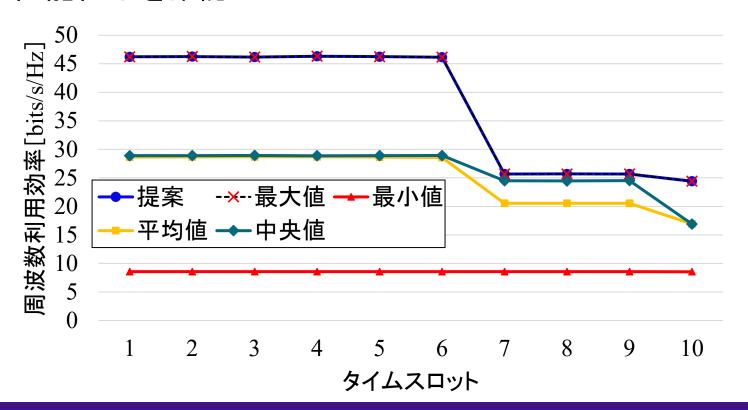
€:各セルへの送信ノードと

割当帯域幅の組



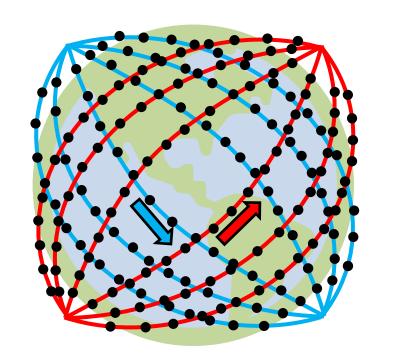
評価概要

- 評価項目
 - カバーエリア制御による周波数利用効率への影響
- 評価環境
 - UEの位置とトラヒック要求量は一様分布
 - LEO衛星の初期位置はHAPS直上
 - 1タイムスロット(50秒)ごとに制御を実施
- 主要パラメータ


パラメータ	値
周波数	193THz(FSO), 2GHz(RF)
帯域幅	1GHz(FSO), 120MHz(RF)
トラヒック要求量	10-100Mbps/UE(一様分布)

評価結果

- LEO衛星1基, HAPS1基, UE100台のケースで評価
 - 提案手法により最大の周波数利用効率を達成
 - 衛星-HAPS間距離の増大に伴うFSO/RFリンクの 性能低下を確認



衛星間光通信における ポインティングエラー発生確率に基づいた 交差軌道間接続選択に関する検討

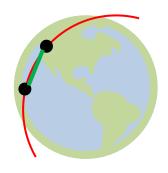
想定環境

- 多数のLEO衛星で構成したコンステレーションを想定
 - 衛星の高度は550km
 - 2種類の方向で構成されるメッシュネットワークを構築
 - 衛星間は波長1.5μmの自由空間光通信によって接続

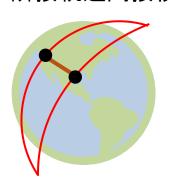
● :衛星

---: 進行パターン①

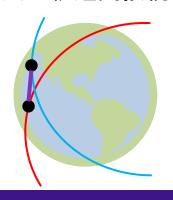
---: 進行パターン②


LEO: Low Earth Orbit

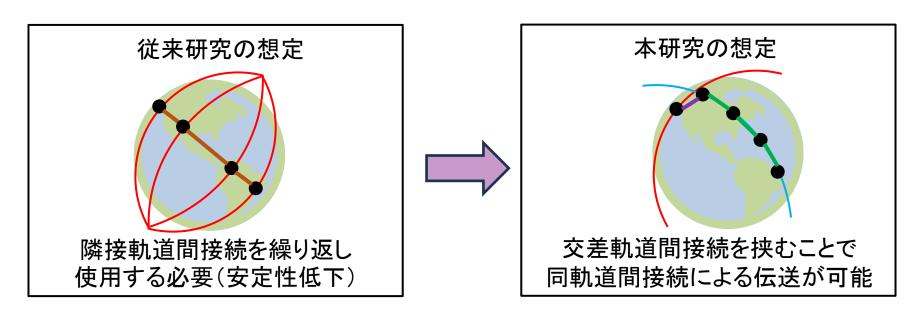
想定する衛星間接続パターン



- 同軌道間接続
 - 切断がなく、衛星間の距離・相対速度が一定
- 隣接軌道間接続
 - 切断はないが、衛星間の距離・相対速度が変動
- 交差軌道間接続(本研究で注目する接続方法)
 - 瞬時的にしか接続不可能
 - 衛星間の距離・相対速度の変動大


同軌道間接続

隣接軌道間接続

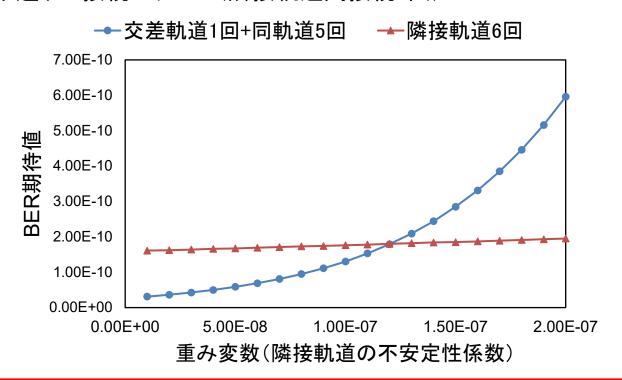

交差軌道間接続

提案手法

- 隣接軌道間接続が続く経路では交差軌道間接続を 利用して同軌道間接続の経路に切り替えを実行
 - 経路切り替えによって安定した接続を行える可能性あり

→ 検証によって経路切り替えの有効性を評価

検証評価概要


- 検証目的
 - 経路切り替えが有効な範囲を確認する
- 評価指標
 - BER(Bit Error Rate)期待值
- 使用パラメータ

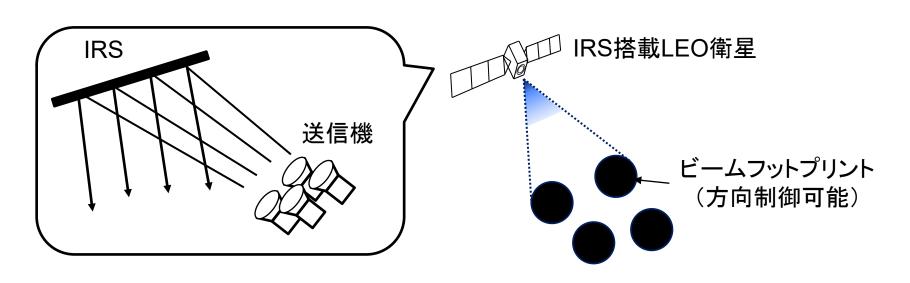
パラメータ	数値	パラメータ	数値
コンステレーションの軌道数	24個	Y方向の平均値 μ_{Y0}	0.53946µrad
軌道内の衛星数	66基	X 方向の分散 σ_X	0.28927µrad
軌道傾斜	53°	Y方向の分散 σ_Y	0.53946µrad
角速度	$\frac{\pi}{2700}$ rad/s	測定時間	90min
X方向の平均値 μ_{X0}	0.36258µrad	測定間隔m	1s

検証評価結果

- 2つの接続パターンのBER期待値を比較
 - 経路切り替え実行パターン(交差軌道間接続1回+同軌道間接続5回)
 - 従来通りの接続パターン(隣接軌道間接続6回)

重み変数の数値次第で、経路切り替えが有効となるケースが存在することを確認

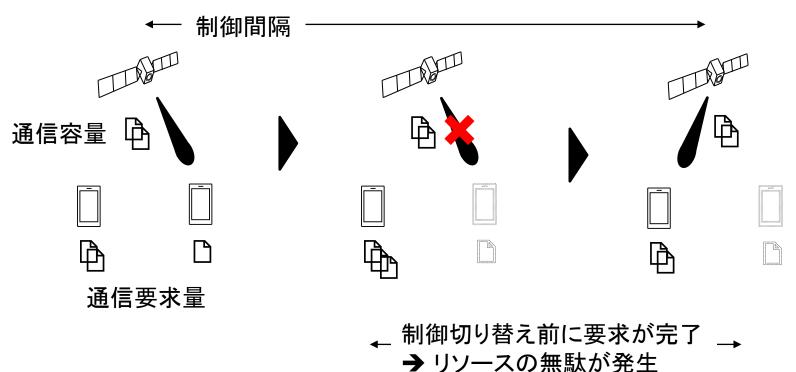
LEO衛星通信システムにおける



Intelligent Reflecting Surfaceを用いたアンテナ構成による周波数プリズムでのマルチビーム制御

想定システム

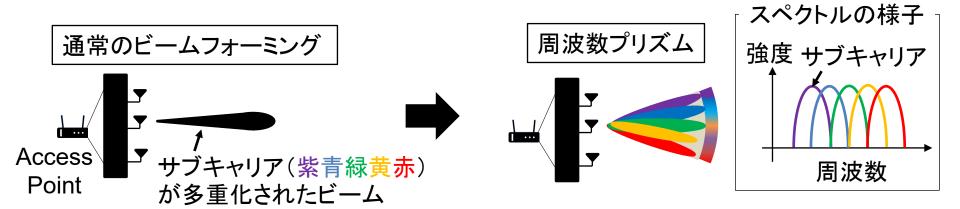
- IRSと送信機を利用したアンテナ搭載LEO衛星通信
 - 複数送信機から電波を放射し、IRSでビームフォーミング
 - 電波の反射方向や指向性の制御により高いパスロスを補償可能
 - 信号をデジタル処理するよりも低損失で高利得を実現可能



消費電力を抑えて高い利得を実現可能

想定システムでの課題

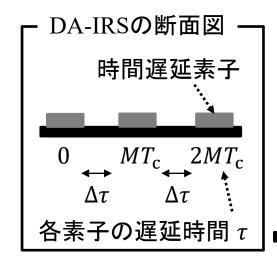
- シングルビーム制御の限界
 - 頻繁なビーム制御更新で通信遅延が増大
 - リソースが過剰で周波数利用効率が悪化

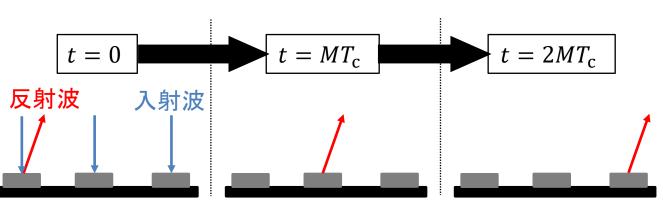


遅延を低下させ、周波数利用効率を向上させるために、周波数プリズムを利用

周波数プリズムによるマルチビーム形成

- 多重化サブキャリアのビーム方向を分散させる技術
 - 1送信機でマルチビームを形成可能
 - → 消費電力を抑制し、周波数利用効率が向上


- アンテナ素子ごとで時間をずらして電波を放射
 - → 素子間で周波数ごとに位相差が発生


IRSで周波数プリズムを実現するために遅延素子を導入

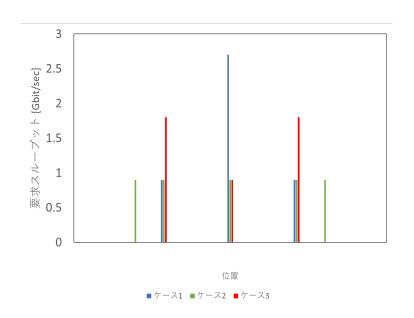
提案手法(1/2)

- 遅延素子を導入したDA-IRSで周波数プリズムを実現
 - 各遅延素子は入射波が反射するまでの遅延時間を制御
 - 遅延時間量 $\Delta \tau$ によって各サブキャリアの分散幅が変化


周波数利用効率が最大となるDA-IRSの各遅延素子の遅延時間の制御が必要

XDA-IRS: Delay Adjustable-IRS

提案手法(2/2)


- 周波数利用効率最大となる周波数プリズム制御
 - 3つの制御を総当たりで決定
 - 中心サブキャリアの反射方向(緑のサブキャリア)
 - ・ビームの広げ幅(DA-IRSの素子間の遅延時間差)
 - 各サブキャリアの各エリアへの割り当て方

評価方法

- 評価指標
 - 複数の通信要求と通信する際の周波数利用効率
- 比較手法
 - 全サブキャリアのビーム方向を真下に集約 (IRS-BF)
 - カバレッジ全体を覆うような周波数プリズム (MAX-PRISM)

Parameter	Definition
Transmit power	20 dB
Noise power	-100 dB
Center frequency	10.5 GHz
Bandwidth	0.25 GHz
DA-IRS element spacing	28.55 mm
Number of DA-IRS elements	1024
Radius of the Earth	6371 km
Altitude of a satellite	800 km
Coverage length of a satellite	330 km
Path loss exponent	2
Distances from the transmitter to the DA-IRS	1 m
Incident angle from the transmitter to the DA-IRS	45°
Reflection angle from the DA-IRS to ground	45°
Antenna gain for the transmitter and receiver	21 dB
Size of each DA-IRS elements along the x-axis and y-axis	0.01 m
Rainfall rate	31.119
Mean 0° isotherm height above mean sea level	2.53 km
Latitude	41 °N

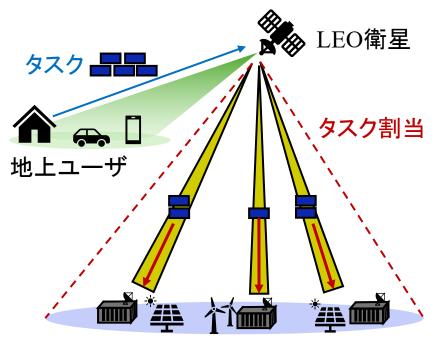
評価結果

- 全ケースで提案手法の周波数利用効率が最大
 - ケース1: MAX-PRISMで効率が低下
 - 要求が真ん中に集中しているため
 - ケース2:IRS-BFで効率が低下
 - 要求が全体に分散しているため
 - ケース3:比較手法のどちらも効率が低下
 - 2つの要求集中地域を同時にカバーできなかったため

光衛星通信を用いた 分散型グリーンデータセンタシステム におけるタスク割当手法

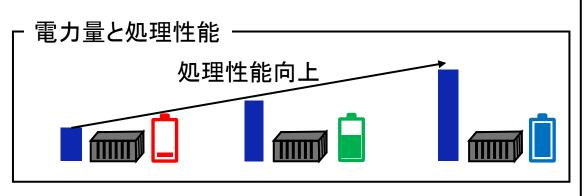
想定システム

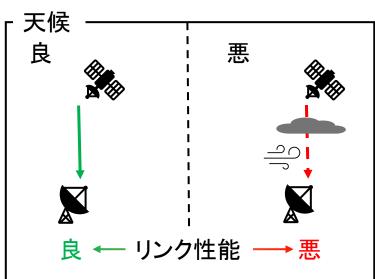
• 構成要素


- LEO衛星
 - 地球低軌道を周回する衛星
- 分散型グリーンデータセンタ
 - 衛星とのFSOリンクによる通信
 - 再生可能エネルギーによる発電
 - 蓄電池による蓄電
- 地上ユーザ
 - データセンタへのタスク要求
- 想定する通信

: RF (Radio Frequency) link

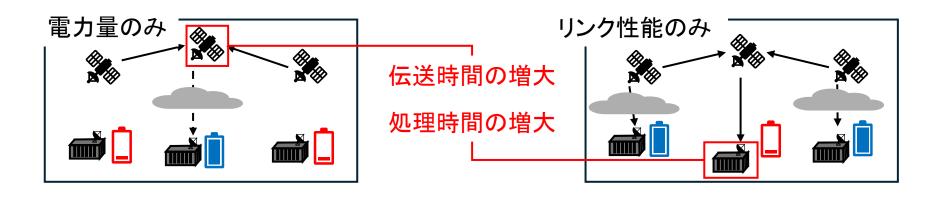
: FSO (Free Space Optical) link


分散型グリーンデータセンタ


LEO: Low Earth Orbit

タスク完了時間に影響を及ぼす要因

- 蓄電量の変動
 - 天候による発電量と消費電力量によって蓄電量が変化
 - → 蓄電量に処理性能が変化し処理時間に影響
- 衛星-地上間のダウンリンク性能の変動
 - − 天候(雲・風)によってリンク性能が変化
 - → リンク性能によってタスクを送る際の伝送時間に影響



想定システムにおける課題

- 蓄電量のみを考慮した場合
 - 性能が低下したリンクへのタスク集中により伝送時間増大
- リンク性能のみを考慮した場合
 - 蓄電量低下に伴い処理能力が低下したデータセンタへ タスクが集中することにより処理時間増大

両方の要素を考慮したタスク割当手法が必要

提案手法の概要

- 目的
 - タスク到来時に利用可能電力量・リンク性能を考慮して 到来タスクの完了時間が最短になるようにタスク割当
- 手法
 - 最適化問題を定式化

$$\min\{\max(T_1, T_2, \cdots, T_k)\}\$$

 $T_i, i \in (1, 2, \dots k)$: データセンタiにおけるタスク完了時間

- 最適化問題の解に基づき割当を決定

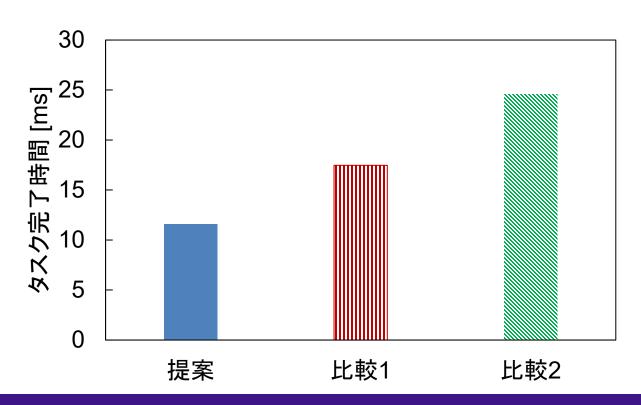
 $T_i = タスク数 × タスク1つ当たりの完了時間$

タスクーつ当たりの完了時間を求めることで 最適化問題の解をもとに割当可能

性能評価概要

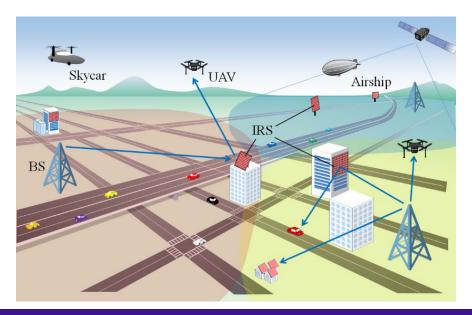
- 評価指標
 - タスク到来ごとのタスク完了時間
- 比較手法
 - 電力量のみを考慮する手法
 - リンク性能のみを考慮する手法

パラメータ	値	パラメータ	値
LEO衛星高度	550km	太陽光による最大発電量	2000J/min
衛星の送信電力	10W	データセンタの標高	1.2km
帯域幅	1GHz	評価期間	1日間
屈折率構造パラメータ	$10^{-14} \text{m}^{-2/3}$	波長	1550nm
雑音電力密度	$3.128 \times 10^{-21} \text{A/Hz}$	天頂角	90deg
液体分水量	$3.128 \times 10^{-4} \text{cm}^3$	乱流の影響を受ける高度	20km


評価結果

到来タスク数がランダム (50 ~ 250) で変化する際の 性能評価

- 比較1:電力量のみ考慮


- 比較2:リンク性能のみ考慮

おわりに~今後への期待~

- 空中にある通信媒体が増加する
- ニーズやコストを踏まえた通信の選択肢の多様化が進む (ユーザ目線では選択する必要が無いのが理想?)
 - → 濃淡付けつつシームレスな3次元ネットワーク = NTN+地上系の構築を目指す
- 日本はどこで勝負?
 - 衛星コンステ構築に真っ向から、は厳しい?(メガベンチャーが主導)
 - → どこの技術に注力? 3GPPには?
- マーケットを研究者がつくっていく意識

